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Abstract. It is difficult to develop style-preserving source-to-source trans-
formation engines for C and C++. The main reason is not the complexity
of those languages, but the use of the C pre-processor (cpp), especially
ifdefs and macros. This has for example hindered the development of
refactoring tools for C and C++.

In this paper we propose to combine multiple techniques and heuristics to
parse C/C++ source files as-is, while still having only a few modifications
to the original grammars of C and C++. We rely on the fact that in
most C and C++ software, programmers follow a limited number of
conventions on the use of cpp which makes it possible to disambiguate
different situations by just looking at the context, names, or indentation
of cpp constructs.

We have implemented a parser, Yacfe, based on these techniques and
evaluated it on 16 large open source projects. Yacfe can on average parse
96% of those projects correctly. As a side effect, we also found mistakes
in code that was not compiled because it was protected by particular
ifdefs, but that was still analyzed by Yacfe. Using Yacfe on new projects
may require adapting some of our techniques. We found that as conven-
tions and idioms are shared by many projects, the adaptation time is on
average less than 2 hours for a new project.

1 Introduction

The C pre-processor [19], cpp, is heavily used by C programmers. Using clever
macros, programmers can overcome some of the limitations of C by introducing
new features such as iterators, or can perform some metaprogramming, or can
factorize any kind of source code text. This possibility to easily extend C is
one of the reasons C is still a popular language even 35 years after its creation.
As Stroustrup said “without the C preprocessor, C itself ... would have been
stillborn” [23]. In fact, cpp is even used in programs written in modern languages
such as Haskell [28] or λProlog. This freedom has nevertheless its price: it makes
it hard to parse C source code as-is, which in turn makes it hard to perform
style-preserving source-to-source transformations such as refactorings [9] on C
source code.

The combination of C and cpp leads to the union of two languages that are
easy to parse separately but very hard to parse together as the grammar of such
union could be very large, contain many ambiguities, and be very different from
the original C grammar. For instance, the sequence X (Y); could represent a



simple function call or a macro X corresponding to a declaration which happens
to be followed by a variable Y surrounded by extra parenthesis.

Static analysis tools and compilers avoid those problems by simply first call-
ing cpp on the source file and then analyze the pre-processed file that now con-
tains only C constructs. Tools such as CIL [16] (C Intermediate Language) also
work on a representation of the code that does not directly match the C language
but makes the analysis simpler. This is appropriate when the goal is to find bugs
or to generate code that no programmer will have to read or modify. However,
for style-preserving source-to-source transformations, using this approach would
mean working on a version of the file that is very different from its original
form, which would make it very hard among other things to back-propagate the
transformation to the original file.

Fortunately, what would be hard to parse and disambiguate for a tool would
also be hard to parse and disambiguate for a human. Thus, many programmers
follow conventions on the use of cpp such as the case sensitivity of macros,
their indentation, or the context in which macros can be used (Section 2.3).
Programmers can then visually rely on these conventions to easily recognize cpp
usages. We thus propose to leverage such implicit information to parse C/C++
code, like humans do.

The challenges for this work are:

– Grammar engineering. The ANSI C and C++ grammars are already com-
plex and large. Adding new constructions may lead to numerous conflicts.
Resolving these conflicts may require significant changes in the grammar.

– The variety of cpp idioms. As macros can be used for many different pur-
poses, we need general techniques to recognize those different usages, as well
as extensible techniques that can be easily adapted to new software.

In this paper we make the following contributions:

– We have designed general techniques to recognize cpp idioms without adding
any ambiguity in the ANSI C and C++ grammars. The main ideas are the
notion of fresh tokens (transforming Yacc in some sense into a LALR(k) tool),
the use of generic views to easily specify complex code pattern heuristics, and
the use of a configuration file containing macro definitions and heuristic hints
that can be used as a last resort.

– We have implemented a parser, Yacfe, that can parse most C/C++ code as
is, by extending the C/C++ grammars and by writing heuristics that make
use of contextual information, names, and indentation.

– We have evaluated Yacfe on large open source projects and shown that our
heuristic-based approach is effective for most C/C++ projects and covers
most uses of cpp.

The rest of the paper is organized as follows. Section 2 describes background
on the parsing problems engendered by cpp. Section 3 then presents our ex-
tensions to the C/C++ grammars to handle cpp constructs and our heuristics
that makes it possible to add the previous grammar rules without introducing



any shift/reduce or reduce/reduce conflict. Section 4 describes briefly how to
use our framework to perform a basic style-preserving program transformation.
Section 5 describes the evaluation of Yacfe on large open source software. We
finally discuss related work in Section 6 and conclude in Section 7.

2 Background

In the following, we use the term ambiguity when grammar rules authorize the
same sequence of tokens to be parsed in more than one way. We use the term
conflict when the ambiguity is only caused by the limitations of the LALR(1)
parsing, as implemented by parser generators such as Yacc [11].

The main constructs and usages of cpp are:

– #include, mostly for header file inclusion.
– #ifdef, for conditional compilation and header file inclusion guards.
– #define, to define macros, with or without parameters; in the latter case

the macros are often used to describe symbolic constants.

cpp directives can be used anywhere in a C file. Extending the C grammar
to handle all possible usages of cpp directives would require extending rules to
handle each possibility. The standard solution is instead to expand cpp directives
before parsing.

2.1 #include

In practice, #include directives are mostly used at the start of a file, at the
toplevel, and on very few occasions inside structure definitions. It is thus easy to
extend the C grammar and the abstract syntax tree (AST) to handle just those
cases. Moreover, as the #include token is different from any other C tokens,
such extension does not introduce any parsing conflict.

2.2 #ifdef

In practice, ifdefs are mostly used either as inclusion guards at the very be-
ginning and end of a file, or to support conditional compilation of sequence of
statements, or to support function signature alternatives. It is also possible by
extending the C grammar to handle this limited set of idioms. The following
excerpts show one of these idioms and the grammar extension that supports it:

#ifde f MODULE
int init_module ( int x )
#else
int init_foo ( int x )
#endif
{



function def ::= dspec declarator { compound }
| #ifdef dspec declarator #else dspec declarator #endif { compound }

The problematic ifdefs are those that are used to support certain kinds of
alternatives for expression or statement code as in the following:

x = (1 +
#ifde f FOO

2)
#else

3)
#endif

;
#ifndef WIN32

i f ( is_unix )
fd = socket ( PF_UNIX , SOCK_STREAM , 0 ) ;

else
#endif

fd = socket ( PF_INET , SOCK_STREAM , 0 ) ;

In the first case, the #else can break the structure of the expression at any place,
leading to two branches with only partial expressions. It is thus not sufficient as
in the previous extension to add a rule such as:
expr ::= . . .

| #ifdef expr #else expr #endif

Fortunately, these situations are rare as such code would also be difficult
for the programmer to understand. One of our heuristics detects some of those
situations by checking if the parenthesis or braces are closed in both branches;
if not we currently treat as a comment the else branch and suggest to the user
that he should perhaps rewrite the code. We found only 116 code sites in the 16
software we analyzed that trigger this heuristic.

In the second case, the #endif breaks the condition statement; the first
branch is a partial statement with a trailing else. In such situations one of our
heuristic treats instead the cpp directive itself as a comment, which allows to
parse correctly the full statement. We currently treat 7.5% of the ifdef directives
as comments and are working to lower this number by handling more ifdef idioms.

2.3 #define and macro uses

Dealing with the definition of macros and their uses is more complex. Figure 1
presents various uses of macros representing common idioms used by program-
mers. Even if most macro uses look like function calls or variable accesses as in
(a), in which case they can be parsed by the original C grammar, this is still not
the case for many of them. For (b) only switch/for/while/if can have a brace or
statement after their closing parenthesis, for (c) and (d) it would require at least
a trailing ‘;’ to make the construction look like a regular statement or declara-
tion, for (d) what looks like a function call in fact mixes types and expressions
as arguments and is, when expanded, a declaration, for (e) what starts as a
function declaration has a multiplication as an argument if we do not have more



#define MAX( a , b) \
( ( a)<(b ) ? ( b ) : ( a ) )

#define LIMIT 3

int x = MAX ( foo ( 1 ) , 1 0 ) ;
int y = LIMIT ;

list_for_each (l , e ) {
printf ( ”%s ” , e−>name ) ;

}

(a) mimicking functions or constants (b) iterator

BEGIN_LOCK
i f (x != NULL )

printf ( ”%s ” , x−>name ) ;
END_LOCK

DECL_LIST (x , int , 0 ) ;
struct x {
ACPI_COMMON_FIELDS
int x ;
}

(c) statement macro (d) toplevel and structure macros

#include <f oo . h>
int f ( UINT ∗ y ) ;
int foo ( ) {
return z ∗ y ;
}

BZ_EXTERN
void __init foo ( int x ) ;

(e) #include hiding typedefs (f) attributes and qualifiers

#define DEBUG(A) do \
{ printf ( ”ERROR: ” , A ) ; } \
while (0 )

DEBUG ( 1 ) ;

__P ( int , foo , ( int x , int y ) )
{ . . . }
ASSERTCMP (x , <, b ) ;

(g) #define partial statement (h) miscellaneous macros

Fig. 1. A few cpp idioms

contextual information about ‘UINT’, for (f) there are too many identifiers in
the prototype, for (g) it would require first to extend the grammar to recognize
macro definitions, and to deal with the \ escape, but the body of this macro is
only a partial statement as it lacks a trailing ‘;’, and finally for (h), < is a binary
operator that requires two operands and cannot be passed as an argument, and
the __P macro does not really look like anything close to a C construction.

Extending the C grammar to handle most of those previous examples would
lead to parsing conflicts and ambiguities. For instance, we could try to extend
the grammar to deal with the iterator (Figure 1(b)) by adding the grammar rule
on line 3:



1 statement ::= expr ;

2 | for ( [expr] ; [expr] ; [expr] ) statement
3 | id ( expr (, expr)∗ ) statement
4 | . . .
5 expr ::= . . .
6 arith expr ::= . . .
7 logical expr ::= . . .
8 primary expr ::= id
9 | int
10 | string
11 | . . .

Unfortunately this will generate a LALR(1) shift/reduce conflict. Indeed,
having analyzed the identifier, seeing an open parenthesis the algorithm can
not determine if it is the start of a function call (which requires to reduce to
primary expr), or the beginning of a foreach statement (which requires a shift
in the statement rule). To be able to decide requires looking ahead at more
tokens; in the previous case to know what token is after the closing parenthesis.
One could avoid this conflict by reorganizing the grammar so that the reduce
action can be delayed, but as the identifier corresponding to the function call
in primary expr (line 8) is deeply nested in the grammar, this would involve a
substantial change to the original grammar. Another solution would be to have
a more tolerant grammar where invalid constructions would be filtered out in a
post-parsing phase. One could then add the rule at line 3 and later check that
the leading expr can only have the form of a function call:
1 statement ::= expr ;

2 | for ( [expr] ; [expr] ; [expr] ) statement
3 | expr statement
4 | . . .

Unfortunately this will generate ambiguities, as the simple 1+1; statement could
be parsed either as a single statement or as the expression 1 followed by the +1;
statement, as + can be used both as an unary and binary operator.

Similar things happen for the other idioms. For instance, adding a rule to al-
low single identifiers to be used as statements or declarations leads to numerous
ambiguities as the sequence X (1); could be either a function call or a macro
statement X followed later by an expression surrounded by extra parenthesis.
Moreover, one grammar extension can also make it harder to add further ex-
tensions. For instance, the naive iterator and macro statement extensions each
generate numerous conflicts; when combined together they generate a number
of conflicts that is superior to the sum of the previous conflicts. There is no
guarantee that even if one refactors the grammar to avoid one conflict, this
refactoring could be kept as one may have to undo or completely change it to
make it possible to support another extension.

Note that for most of the idioms in Figure 1, even if one is not familiar with
those idioms, it is quite easy for a human to disambiguate them. Indeed, the
name, the presence of visual hints such as newlines or the lack of white-space
between tokens, and the context surrounding the construct all contribute to
make the meaning clear.



3 The Yacfe Engine

In this section we explain our different techniques to handle cpp, which are (1)
our way to extend the C/C++ grammars, (2) a heuristic pre-parsing phase that
makes the previous grammar extensions possible without introducing parsing
conflicts, and (3) a configuration file that allows users to give additional hints
to our heuristics.

3.1 Grammar Extensions and Ambiguities

Tokens such as identifiers can play many different roles. Our solution to this
problem is mainly to avoid it by replacing widely used tokens such as identifiers
with fresh tokens that can not generate any conflict with the existing rules. We
re-classify tokens in a phase run between lexing and parsing. For instance, for
the iterator extension we re-classify some identifier tokens as “iterator” tokens.
Then, we can write grammar rules mentioning iterator tokens instead of identifier
tokens. A LALR parser can then even with a look-ahead of 1, seeing an identifier
decides which rule to use by inspecting the class of the token: a normal identifier,
an iterator identifier, a macro statement identifier, etc. What we essentially do is
to mimic what programming language designers do when they extend a language:
adding new keywords to avoid ambiguities with previous constructions. Here are
examples of some of our extensions to the C and C++ grammars that rely on
these fresh tokens:
1 statement ::= . . .
2 | for ( [expr] ; [expr] ; [expr] ) statement

3 | idMacroIterator( expr (, expr)∗ ) statement

4 | idMacroStatement

5 primary expr ::= id
6 | int
7 | string

8 | idMacroString string∗

9 | . . .
10 declaration ::= dspec ;

11 | idMacroDecl ( expr or type (, expr or type)∗ ) ;

12 define body ::= statement
13 | expr

14 | {BraceInit initializer (, initializer)∗ }
15 | . . .
16 init decl ::= declarator
17 | declarator = initializer

18 | declarator (ParenConstructorC++ expr (, expr)∗ )

19 template id ::= idTemplate <InfTplt type or expr (, type or expr)∗ >SupTplt

Re-classifying some tokens requires recognizing some code patterns, which
in turn requires a form of parsing. As we will explain in the next section, our
heuristics need only simple forms of parsing. We thus use two layers of parsing
where the final sophisticated parser relies on the job done using the simpler
parser of the previous layer.



We also had to extend the C grammar to deal with C extensions that are often
used by open source software such as the extensions implemented by gcc [22]
(embedded assembly, case range, attributes, etc). We currently have added 65
new grammar rules on top of the original 195 C rules, to handle the cpp directives
and common macro idioms, as well as 59 rules to handle gcc extensions. Note
that we almost didn’t modify the rules from the original grammar; we didn’t
have to reorganize the existing rules while adding the new rules because each
extension was local, thanks to the fresh tokens. We only had to slightly refactor
the original compound rule because of interactions with ifdefs constructs.

3.2 Heuristics and Views

Some heuristics are needed to detect specific tokens that must be re-classified.
These interesting tokens are often identifiers, corresponding to different cpp
macro idioms, but they can also be specific ifdef tokens or even some open
parenthesis tokens. Our heuristics look at the context of those tokens, the struc-
ture of their names, or their indentation. Some of these heuristics may need to
access to a large context of the token such as a large sequence of tokens af-
ter (look-ahead) or even before the specific token. Even if some programming
languages such as ML provide powerful pattern-matching capabilities over lists
and algebraic data-types (ADTs), it is not easy to write some of our heuristics
working on such token lists. For instance, for the foreach heuristic, we may want
informally to look at code patterns like .*each.* (...) {, but this can only
be incompletely translated in ML (in the OCaml [12] syntax) as:

match token_list with
| Id (s ) : : TSym ( ” ( ” ) : : TSym ( ” ) ” ) : : TSym ( ”{” ) : : _
| Id (s ) : : TSym ( ” ( ” ) : : _ : : TSym ( ” ) ” ) : : TSym ( ”{” ) : : _
| Id (s ) : : TSym ( ” ( ” : : _ : : _ : : TSym ( ” ) ” : : TSym ( ”{” ) : : _
| . . .

when s =˜ ” .∗ each .∗ ” −>

Moreover, even if we could use a form of generalized regular expression over
ADTs (as in XDuce or Prolog-III), such regular expressions would not cope with
the problem of possible nesting of parenthesized expressions.

To solve this problem we propose the notion of view over these tokens that
offers an additional layer on top of the list of tokens, to group them into different
classes. Views make it possible to use the traditional pattern-matching features
of languages such as ML to easily express complex code patterns. This idea was
proposed by Wadler in [27] but required originally to extend the programming
language. In our case, we do not need to extend ML; we have implemented views
using ordinary functions and references (to make it possible to modify elements
in the views), looking at views as an idiom instead of a programming language
feature. For the iterator example, a parenthesized view adds a tree layer over
the list of tokens allowing the previous heuristic to be expressed as:

match paren_view token_list with
| Leaf ( Id (s ) as t1 ) : : ParenNode (_ ) : : Leaf ( TSym ( ”{” ) ) : : _



when s =˜ ” .∗ each .∗ ” −>
reclassify t1 TMacroIterator

This heuristic looks for a token identifier, followed by a parenthesized term (con-
taining possibly some nested parenthesized terms), followed by an open brace,
and re-classify the leading identifier as an iterator identifier if it contains the
word “each”. This heuristic will thus reclassify the list_for_each identifier in
Figure 1(b) but not the MAX identifier in Figure 1(a) as the closing parenthesis
of the MAX parameters is not followed by an open brace.

We have currently implemented 5 views: the parenthesized view, braceized
view, ifdef view, line view, and combined line and parenthesized view. These
views group tokens in different manners and cover most of our needs. The preced-
ing heuristic is in fact incomplete as it could incorrectly reclassify function names
in function definitions such as int each(int i) { .... The current heuristic
thus for instance also checks that the identifier is indented, is not at the toplevel,
and is not preceded by any other token on its line, using the line view and con-
textual information from the braceized view. The heuristic also allows for more
words than “each” to be part of the identifier (e.g. “loop”).

Here is another heuristic using the combined line and parenthesized view.

(∗ ex : BEGIN LOCK(X,Y) wi thou t t r a i l i n g ’ ; ’ ∗)
match lineparen_view token_list with
| Line ( [ NoL ( Id (s ) as tok1 ) ; ParenthisedL (_ ) ] )

: : Line ( tok2 : : _ )
: : _
when indent_of tok1 <= indent_of tok2 &&

is_upper_case s −>
reclassify tok1 TMacroStatementParams

The code for our heuristics and view constructions currently consists of 2300
lines of OCaml code. An important part of this code is dedicated to the detection
of typedefs or type-macro identifiers as in Figure 1(e). An alternative would be
to write a dedicated analysis to gather all the typedef declarations from header
files in order to build a symbol table for typedef identifiers. Nevertheless, it
would require to know where are located those header files (usually specified in
makefiles with the -I cpp flag) and to have access to those files. For the code
of multi-platform applications, this is not always convenient or possible. For
instance, one may not have access to the Windows system header files on a Unix
machine. We thus opted to try to infer typedefs using heuristics and parse code
even with partial information on types.

3.3 Configuration File and Extensibility

Even if the heuristics we have written using the previous views capture many
conventions, there are still software or specific programmers using slightly differ-
ent conventions. For these cases, it would be too demanding to ask to the users
of Yacfe to modify the code of Yacfe to add new heuristics. Moreover, those
heuristics might be valid only for a set of macros and generate false positives



when applied globally. Therefore, to offer an easy way to partially extend Yacfe,
we propose to use an external configuration file where the user can manually
specify the class of specific but recurring macros that cause the above heuristics
to originally fail. We have reused the syntax of cpp for the format of this file but
Yacfe recognizes special keywords used in the body of macros as hints. Here is
an excerpt of the configuration file for the Linux kernel:

#define change hops YACFE MACRO ITERATOR
#define DBG YACFE MACRO STATEMENT
#define KERN EMERG YACFE MACRO STRING
#define DESC ALIGN YACFE MACRO DECL

This file can also be used as a last resort as a way to partially call cpp for
difficult macros, such as the one in Figure 1(h), by adding for instance this
definition:

#define P ( returnt , name , params ) r e tu rn t name params

In this last case, the resulting expansion is marked specially in the AST so
that even if a tool using Yacfe can match over such expansion, such tool will be
warned if it wants to transform those expansions.

To assist the user in creating those configuration files, Yacfe remembers,
while attempting to parse for the first time the different files of a software, the
identifiers in the line before and on the same line than a parsing error. Yacfe
then returns to the user the 10 most recurring identifiers and displays each time
one example of a parsing error containing the identifier. This helps to quickly
find and define the recurring difficult macros.

3.4 Other Techniques

To faithfully represent the original program, we also had to keep extra tokens
in the AST which are normally abstracted away, such as extra parenthesis as in
(1+((2)). We thus have more a concrete syntax tree (CST) than an AST.

We have also implemented an error recovery scheme so that a parsing error in
one function does not hinder the parsing of the rest of the file. In case of a parsing
error, Yacfe first displays the line where the error occured and the content of the
file around that line. Yacfe then skips the set of tokens before the next function
(using heuristics to detect the start of the next function), and returns a special
AST error element, indicating the parsing error, containing all the tokens that
were skipped (this is useful to compute the statistics of Section 5). Finally, Yacfe
re-run the parser for the remaining tokens, for the next function.

Surprisingly, extending Yacfe to handle C++ was not as hard as we imagined.
It took us about 2 weeks to parse more than 90% of the source code of Mozilla
and MySQL. Parsing C++ is known to be difficult due to the complexity of
the language and the numerous ambiguities and LALR(1) conflicts in its official
grammar. These ambiguities require contextual information or post-processing
semantic analysis to be resolved, as described in the annotated C++ reference
manual [5]. Nevertheless, by applying the same techniques we used to disam-
biguate cpp idioms, we were able by introducing new fresh tokens and their



associated heuristics to parse most C++ code, while using the original C++
grammar almost as-is.

4 Using Yacfe

Parsing is only one component of a program transformation system, but a crucial
one. Yacfe offers other services such as type-checking, visitors, AST manipula-
tions, and style-preserving unparsing. This last functionality was relatively easy
to implement because of the way we originally parse the source code. The descrip-
tion of those features is outside the scope of this paper and Figure 2 illustrates
just a simple example of program transformation using the Yacfe framework (in
the OCaml [12] syntax). The transformation consists in replacing every occur-
rences of ‘0’ by the NULL macro in expressions involving relational comparisons
on pointers.

(* X == 0 –> X == NULL when X is a pointer *)
open Ast c
let main =

let ast = Parse c.parse c and cpp Sys.argv.(1) in
Type annoter c.annotate program ast;
Visitor c.visit program {

Visitor c.kexpression = (fun k exp −>
(match Ast c.unwrap exp with
| Binary(e1, Logical (Eq), Constant(Int("0")) as e2) −>

(match Type c.type of expr e1 with
| Pointer −>

let idzero = Ast c.get tokens ref1 e2 in
Ast c.modify token (fun s −> "NULL") idzero;

| −> ()
)

| −> k exp
);

);
} ast;
let tmpfile = "/tmp/modified.c" in
Unparse c.unparse ast tmpfile

Fig. 2. A simple style-preserving program transformation using Yacfe API in OCaml

Note that as the pointer expression can be an arbitrary expression, including
complex computations inside parenthesis, and as the transformation also requires
semantic (type) information, it would be hard with lexical tools such as sed to
correctly perform even this simple transformation. Moreover, as many macros
expand to ‘0’, working on the pre-processed code, like most tools do, could lead
to many false positives.



C frontends such as CIL [16] also offer visitor services and program trans-
formation abilities, but they output source code that is very different from the
original code as they operate after preprocessing. C refactoring tools such as
Xref [25] can not perform the transformation shown in Figure 2 as it is not part
of their limited set of supported refactorings. Xref supports the renaming of
simple macros but performs incorrectly for instance the renaming of an iterator
macro.

5 Evaluation

In this section we evaluate the applicability of our techniques by testing if Yacfe
can parse the code of popular software. All experiments were made on an Intel
Core 2 at 1.86GHz with 2Go of RAM and a 160Go SATA disk. Table 1 presents
the parsing results of Yacfe on different types of software (kernel, browser, com-
piler, game, etc).

Software Languages Age Type LOC skipped correct
(Years) (kilo) (%) (%)

Linux C 17 Kernel 8050k 1.33 98.96
Mozilla C/C++ 14 Browser 5073k 3.05 95.58
Mysql C/C++ 13 Database 1306k 1.82 93.23
Qemu C 5 Emulator 434k 3.30 97.00
emacs C/Lisp 31 Editor/OS 395k 4.30 96.14

git C 3 VCS 94k 0.03 99.91
sparse C 5 C frontend 26k 0.69 99.41

gcc C 31 Compiler 1421k 1.45 97.39
Quake III C 9 Game 311k 2.15 96.09
openssh C 9 Network 82k 0.69 99.16
pidgin C 9 Communication 426k 1.48 99.35
kdeedu C++ 7 Education 315k 1.19 95.22
glibc C 30 Base Library 773k 3.95 92.37

libstdc++ C++ 10 Base Library 438k 3.43 55.22
sdl C 10 Game Library 201k 3.05 95.83
gtk C 10 GUI Library 737k 0.75 98.20

Table 1. Yacfe parsing results and statistics on 16 large open source projects

Yacfe can parse on average correctly 96% of the code. The percentage is
in number of lines. By parsing correctly we mean returning successfully AST
elements that are not the AST error element mentionned in Section 3.4. The AST
elements may still contain mistakes as we may have bugs in our parser. In fact,
we had such bugs in the past and for instance, because of a typo, we generated
in the AST the same tree for expressions involving the < and > operators. But,
as we have now used extensively the Yacfe framework for more than a year, to



perform program transformations on Linux drivers [17], we found such typos and
are now confident that the returned ASTs actually match the source correctly,
at least for the C parser (we have not yet tested extensively our C++ parser).

The skipped column represents the percentage of lines that are either (1)
completely skipped by Yacfe, for instance for code in branches containing partial
statements as explained in Section 2.2 or in #if 0 branches, or (2) partially
skipped, for instance when a line contains a problematic macro mentioned in
the configuration file which must be expanded.

For each piece of software, it took us on average less than 2 hours to write
the configuration file containing on average 56 hints or definitions of recurring
problematic macros. The average time to parse a file is about 0.03s. Analyzing
the whole Linux kernel with Yacfe takes 12 minutes, whereas compiling it with
gcc (with the maximal number of features and drivers) takes 56 minutes.

Note that even if Yacfe does not parse correctly 100% of the code, it still
analyzes in general more code than gcc which processes only certain ifdefs. On
an Intel machine with all the features ‘on’, gcc compiles only 54% of the Linux
kernel C files, as the code of other architectures is not considered. Moreover, using
static analysis tools such as Splint [7] requires also a setup time. For instance,
configuring Splint to analyze one Linux kernel driver took us more than 2 hours
as Splint can work only after preprocessing which requires among other things
to find the appropriate cpp options (more than 40 -D and -I flags), spread in
Makefiles or specific to gcc, to also pass to Splint. This is not needed with Yacfe.
Bug detection tools can thus have false positives, for code inside certain ifdefs,
as they don’t analyze the whole original source code.

The remaining errors are due to features not yet handled by our parser such
as embedded assembly for Windows, Objective C code specific to MacOS, the
gcc vector extension, or cpp idioms and macro body definitions not yet handled
by our heuristics or grammar or configuration files. Among those errors, we
also found true errors in certain ifdef branches which had probably not been
compiled for a long time. Some Yacfe parsing errors were also raised because
the indentation of macros was not correct, which prevents our heuristics to work
(often because tools like indent are not aware of cpp constructs and wrongly
indented the code). We found 31 such mistakes in the Linux kernel, and have
submitted patches that have now been accepted and are part of the latest kernel.
We also found 1 or 2 mistakes in Qemu, Openssh, Pidgin, and Mozilla.

Table 1 also shows that the younger the software, the easier it is for Yacfe to
parse it. This is probably because the pitfalls of cpp are now widely known and
thus programmers are more conservative in their use of cpp.

Yacfe can still not parse most of the C++ code in the C++ standard GNU
library as this code use advanced C++ features and macros not yet handled
by our heuristics and grammar. In fact the code is also arguably very hard to
disambiguate for a human.



6 Related Work

Ernst et al. [6] presented an extensive study on the usage of cpp in 26 open
source software, representing a total of 1.4 millions lines of code. They relied on
the PcP3 [3] tool to compute various statistics. PcP3 is a framework for pre-
processor aware code analysis where the code is still pre-processed but by an
embedded cpp in which the user can write Perl functions invoked when certain
cpp constructs are recognized. While this approach using hooks might be enough
to statically analyze code, for instance to find cpp-related bugs, PcP3 offers no
support for program transformation as the code is still in the end preprocessed.

Based on the above study, Brewer et al. [14] proposed a new pre-processor
language for C, Astec, which can express many cpp idioms while being more
amenable to program analysis. They also presented a tool to assist users in
migrating code from cpp to Astec. They tested their approach on 3 small software
and a small subset of Linux.

Past works to parse C code as-is have focused mainly on ifdefs [2, 10]. Baxter
et al. [2] proposed an extended C grammar, AST, and symbol table dealing with
ifdef directives, similar to what we presented briefly in Section 2.2. They also
impose constraints on where such directives can be placed, mainly at boundaries
between statements or declarations. Garrido et al. [10] extended this approach
to deal with directives not placed on clean boundaries, for instance between par-
tial expressions as in the example in Section 2.2. They proposed the notion of
pseudo-pre-processing where some code preceding ifdefs of partial statements or
expressions are internally distributed in both branches, to complete them, but
marked specially in the AST to make it still possible to back propagate modifi-
cations on the original code. They tested their approach on 2 small software. We
found, on the code we analyzed, that more than 90% of the ifdefs are placed at
clean boundaries as it makes the code more readable. Some programmers have
also argued that some use of ifdefs are considered harmful [20].

Few works have focused on macros, which we found in practice more prob-
lematic than ifdefs regarding parsing. Livadas et al. [13] proposed another pre-
processor, Ghinzu, allowing to track and map code location in the expanded code
to the original code. Baxter et al. [4] briefly described the handling of cpp in
their commercial program transformation system framework DMS. As in PcP3
they implemented their own pre-processor called between the lexing and parsing,
but use it only when necessary. They retain some cpp macros uses in the AST
when possible and fall-down to their embedded pre-processor by expanding some
macros in case of parsing errors.

Baxter et al. [4] as well as McPeak et al. [15] have argued for the use of Gen-
eralized LR[24] parsing (GLR, or parallel LR) instead of LALR(1) as in Yacc,
especially to deal with the C++ language, independently of the pre-processing
problem. Using a GLR tool does not reduce the number of conflicts in a grammar,
as GLR is still a LR-based technique. But, instead of favoring one choice, for in-
stance shift over reduce, as in Yacc, GLR tries both possibilities and returns a set
of parse trees. In some cases many parsing branches eventually reach a dead-end
and only one parse tree is returned. The shift/reduce conflict introduced when



adding the iterator construct in the grammar in Section 2.3 is thus irrelevant
when using a GLR parser. In other cases, many parsing branches could succeed
and GLR thus postpones the disambiguation problem to a post-parsing phase.
Using more semantic information the programmer must then decide which of
those parse trees are invalid. In this paper we opted instead to disambiguate a
priori using views and heuristics, as lexical information such as name or inden-
tation are more relevant than semantic information to disambiguate cpp idioms.
Moreover, by using fresh tokens we can have a grammar without almost any
LR conflicts whereas using GLR without our fresh tokens would lead for our
C grammar to many conflicts and no static guarantees that all ambiguities are
resolved by the post-parsing phase. The C++ grammar written by McPeak
thus contains 138 conflicts, and does not handle any cpp constructs. Our C and
C++ grammars, which also handle cpp constructs, contain respectively 1 and
6 shift/reduce conflicts, including the classic dangling else conflict, and were all
resolved by adding precedence directives in the grammar.

To solve some of the C++ conflicts, Willink [29] has heavily rewritten the
original C++ grammar, for instance to better deal with templates, which use
the < and > symbols already used for relation comparisons in expressions. Nev-
ertheless, as opposed to the original grammar which provides a useful readable
specification of the language, the modified grammar of Willink is hard to read
and breaks the conceptual structure of the original grammar. It is also a superset
of the language and requires a post-processing analysis to generate the final AST
and solve ambiguities.

There are two dedicated refactoring tools for C/C++ listed on the refactoring
website [8], including Xref [26], and some IDEs such as Eclipse have some sup-
port for C/C++. Nevertheless, they support only a limited set of refactorings,
which in turn represent only a small part of the program-transformation spec-
trum. They do not offer any general mechanism to deal with cpp. Instead, Xref
uses a classical C front-end, EDG [1], which like PCP3 implements its own cpp
preprocessor. It provides opportunities to track cpp uses, but not to transform
them.

Spinnelis [21] focused on the rename-entity refactoring that existing refactor-
ing tools may implement only partially as they can miss some code sites (false
negatives). This is because cpp macros can concatenate identifiers with the #
cpp operator, generating identifiers that may not be visible directly in the orig-
inal source code. Spinnelis thus proposed techniques to statically track those
concatenations. We instead extended the AST and the grammar to accept such
concatenation constructs and postpone those analysis to transformation engines
working on our extended AST.

No previous work tried to leverage the implicit information programmers use
to disambiguate cpp usages, or to represent cpp idioms directly in the AST.
They thus all work on program representations that do not directly reflect the
original code. Most of the previous work have also been applied only to small
software.



7 Conclusion

In this paper we have presented Yacfe, a parser for C/C++ that can represent
most cpp constructs directly in the AST. This is made possible by adding new
grammar rules, recognizing cpp idioms, without introducing any conflict and
ambiguity in the original C and C++ grammars by using fresh tokens. Those
fresh tokens are generated by heuristics that leverage the name, context, and
indentation of cpp constructs.

We have used Yacfe in the past as part of a project to evolve Linux device
drivers [17] in which the correct parsing of most code helped automate most of
the work. We have also used it as part of a source code comment study [18]
where the maintenance of cpp constructs in the AST was necessary. We hope
Yacfe can be useful to other researchers in situations that require manipulating
source code as-is, such as for refactoring, when evolving APIs, when offering a
migration path from legacy code to modern languages, or to find bugs at the
cpp-level for instance on the incorrect use of macros.

Availability

The source code of Yacfe as well as the data used for this paper are available on
our web page: http://opera.cs.uiuc.edu/∼pad/yacfe/.
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